Frequently Asked Questions

Megalodon FAQ

  • Why are there so many Megalodon teeth?

    One shark loses an average of 20,000 teeth in their lifetime. Some species lose up to 50,000 teeth in their lifetime. It only takes on average 7-10 days for the second row of teeth to move up to the first row. In 7 to 10 days later the first row of teeth end up on the bottom of the ocean where they land in a sediment and become fossilized. If you take 1 shark with 20,000 teeth times millions of sharks, times millions of years there is a number that your calculator would not be able to handle all of the zeros. The reason sharks have so many teeth is that don’t have hands to eat around the bone like we do. They bite right into the bone or even right through the bone. This causes damage to the teeth breaking them or dislodging them from the jaw. If they didn’t have replacements they would starve. 

  • Why are Megalodon Shark Teeth so many different colors?

    The Original color of these fossil shark teeth is gray from the Hawthorne Formation (ex: Megalodon shark Tooth on the far left). The Hawthorne Formation is generally light to dark-gray clay which was around in the Miocene /Pliocene Epoch approximately 2.5 to 5 million years ago. The Hawthorne Formation had excellent preservation conditions for fossilization

    The three Megalodon shark teeth in the middle were teeth that were just coming out of the riverbank. These teeth were exposed to Tannin. As you can see these teeth have multiple colors. Tannin comes from decayed vegetation from plants, leaves, and bark. If you have ever seen a river that has a tea color this is a concentrated Tannin. Tannin eventually stains the tooth a varying brown to an orange or red color. The last tooth to the far right has been totally exposed to tannin as it is all red on both sides. How fast these teeth change color depends on the amount of tannin. Generally speaking, these teeth can change color from 3 months to a couple of years.

    • Gray: Is from being mineralized in the Hawthorne formation which is a gray clay.
    • Tan: Is from being mineralized in Sand
    • Red: Usually from the early onset of Tannin
    • If you have ever seen freshwater rivers that have tea-colored water this is usually caused by Tannin. Tannin is decayed leaves and bark. As the leaves decay in freshwater pockets on the bottom of these rivers the water becomes acidic, and the leaves deteriorate and leave an iron residue on the tooth.
    • Brown: Brown teeth are usually from being in Tannin and tree leaves too long. Iron deposits build up from leaf decay trapped in pockets along the bottom. The iron starts building up on the teeth. Sometimes the iron coating can get very thick and is not removable as the iron has bonded to the tooth.
    • White: White color teeth are usually from being replaced by calcium carbonate sediment (broken down seashells) A Great example of white color teeth is found in Summerville SC teeth. White teeth can also be caused by too much acid in Tannin (acidic burning). This would be in areas where the tooth is exposed on a flat bottom where the leaves don’t have a chance to accumulate. Such as tidal areas that remove the leaves stopping the accumulation of iron deposits.
    • Orange: Orange is found in iron in a sandy-type sediment. Georgia red clay is a great example. You can also find iron-rich sand offshore in North Carolina.
    • Black: Black teeth are usually caused by anaerobic bacteria or black mud.
    • There are many other colors teeth come in: yellow, green, off-white, etc

    Teeth have the ability to take on many other colors from the minerals they come in contact with. 

  • What Are Pathological or Mutated Shark Teeth

    Pathologic shark teeth are developmental abnormalities that can be caused by a variety of factors, including genetic mutations, injuries, nutritional deficiencies, and disease. They are relatively common in the fossil record and can be found in sharks of all ages and species.

    Some of the most common types of pathologic shark teeth include:

    • Compressed or dwarfed crowns: These teeth are smaller and narrower than normal teeth and may be crowded together in the jaw.
    • Split crowns: These teeth have a crown that is divided into two or more sections.
    • Twisted crowns: These teeth have a crown that is twisted or deformed.
    • Fused teeth: These teeth are two or more teeth that have fused together.
    • Missing cusps: These teeth have one or more cusps that are missing or underdeveloped.

    Pathologic shark teeth can provide scientists with valuable insights into the health and well-being of ancient sharks. For example, a tooth with a compressed crown may indicate that the shark was malnourished, while a tooth with a fused crown may indicate that the shark had survived an injury.

    In addition to their scientific value, pathologic shark teeth are also popular among collectors. Their unusual and bizarre appearance makes them highly sought-after specimens.

    Here are some examples of pathologic shark teeth:

    • Hubbell teeth: These are heart-shaped teeth from juvenile Carcharocles megalodon sharks. They are thought to have been caused by nutritional deficiency.
    • Fish hook teeth: These teeth have a curved root that resembles a fish hook. They are thought to have been caused by an injury to the developing tooth.
    • Split tip teeth: These teeth have a crown that is divided into two at the tip. They are thought to have been caused by a genetic mutation.
    • Trident teeth: These teeth have three cusps instead of the usual one or two. They are thought to have been caused by a genetic mutation.

    Pathologic shark teeth are a fascinating reminder of the diversity and resilience of nature. Even with their abnormalities, these sharks were able to survive and thrive in their environment. 

  • How much is a sharks tooth worth

    There are different factors that determine the value of a shark tooth such as Size, condition, Colors, Locality, Media events such as shark week, Megalodon movies, Gifting occasions Christmas, birthdays, 2 or more very serious collectors battling over having the best specimens in their collections, etc.


    Here are the Factors that determine a sharks tooth value

    Size and Condition are the first consideration

    Size is an important factor in determining the value of a shark tooth. The Majority of teeth are measured from the tip to the longest of the 2 root sides.
    Generally speaking the larger the tooth Measurement the larger the shark. Some species get larger than others. Adult Megalodon teeth get up to the 7″ inch range . Whereas Adult Giant thresher teeth get up to 2″. A two-inch Thresher is worth more than a 4″ megalodon because of its rarity in size.

    Here is a general guide on where teeth explode in price. I will not put an exact price as there are other variables that can affect the price such as Locality, the current economy, media events such as the Meg Movie, Shark Week, Christmas, 2 or more serious Collectors fighting to control the market on certain species

    These size ranges are based on hardcore divers who dive for a living

    Megalodon Teeth
    The average size is 3.5-4.5″‘
    Less common 5″
    Rare is 6″
    Very rare 6.5″
    extremely rare 6.75″
    Once in a lifetime 7″ plus

    Great white shark teeth
    The average size is 2″ to 2 1/4″
    Less common 2 1/4″
    Rare is 2 1/2″ Rare
    Extremely rare 2 3/4″
    Once in a lifetime 3″ plus

    Angustiden
    The average size is 2
    Less common 2 1/2″
    Rare is 3″ Rare
    Very rare 3 1/2″
    Extremely rare 4″
    Once in a lifetime 5″ plus

    Giant Thresher
    The average size is 1 1/4″
    Less common 1 1/2″
    Rare is 1 3/4″ Rare
    Once in a lifetime 2″ plus

    Benedeni
    The average size is 1 1/2″-2″
    Less common 2 1/4″
    Rare is 2 1/2″ Rare
    Once in a lifetime 3 ” plus

    CONDITION 

    Another factor that plays an important role in price is the condition of the tooth.
    For every nick, chip missing piece of the specimen, the price goes down.

    The reasons for the damage are generally from mother nature but also from infrastructure.
    Examples are
    Feeding damage to the edge or tip from the shark during a feeding frenzy
    Being washed out of the original formation into hostile environments such as sand and current in the ocean and rivers or wind and sand in the desert which are ancient sea beds.
    Exposure to Tannin and iron from decayed leaves.
    Barnacles grow on the edge of the enamel. Lifting the enamel as its base grows. Which in turn allows smaller barnacles to continue growing under the enamel stripping the tooth.
    Erosion from waves, tidal currents tumbling in storm surges.
    Sun leaching after exposure on the surface
    Tumbling and dredging through excavation.

    COLOR

    Shark teeth come in an array of different Fun colors and are highly collectible. Some of the colors are very vibrant and can really increase the value of a shark tooth.
    The most common colors are Tan and Gray.
    Less common Brown Black and Orange
    Rarer colors are Red Green and white

    LOCATION 

    Shark teeth are abundant across the world. Sharks have been on our planet for 350 Million years and lose an average of 20,000 teeth in their lifetime.
    But certain species were only in certain locations on earth and some species have been around longer than others. As an example, the sand tiger shark has been around for 65 million years and has lived in many oceans, and is very common.
    Whereas the Planus Mako shark tooth is only found on the west coast of California and was only around for 17 Million years. Another factor for locality teeth is that some of the formations have only resurfaced in small areas and are limited such as Auriculatis teeth from Kazakhstan or Morocco. South Pacific Megalodon teeth are limited by the depths of the ocean. These teeth were dredged from a depth of 500 to 1000 ft and a 3-day boat ride offshore New Caledonia. This was done with a large boat and a crew which is very cost prohibitive. The rarity of these locality shark teeth restricts their availability for collectors and in turn demands a high price. 

  • Why do Megalodon Teeth have Holes and Orange Spots

    You may have seen shark teeth with holes in them or orange spots . These orange spots are created from various marine life that secrete a substance that is acidic and dissolves the calcium of the shark tooth enamel. Photo above

    The deep holes that you see can be caused by various Marine life

    • Moon snails (Naticidae): Moon snails are found in all oceans and seas, and they prey on a variety of bivalves, including clams and mussels. Moon snails use their sharp radulae to drill holes in the shells of their prey, and then they inject digestive enzymes into the holes. The enzymes dissolve the soft tissues of the prey, and the moon snail then consumes the liquefied tissues.
    • Boring clams: Are found in all oceans, seas, lakes, and Rivers. They use a variety of methods to bore into different materials. Some boring clams use their strong shells to grind into material. While others use their foot to secrete a substance that dissolves material.
    • Harp snails (Harpidae): Harp snails are found in tropical and subtropical oceans. They prey on a variety of invertebrates, including mollusks, crustaceans, and worms. Harp snails use their long, slender snouts to probe the substrate for prey. Once they find prey, they use their radulae to rasp away at the flesh.
    • Whelks (Buccinidae): Whelks are found in all oceans and seas. They prey on a variety of invertebrates, including mollusks, crustaceans, and echinoderms. Whelks use their strong jaws to crush the shells of their prey, or they use their radulae to drill holes in the shells and then inject digestive enzymes.
    • Murex snails (Muricidae): Murex snails are found in all oceans and seas. They prey on a variety of invertebrates, including mollusks, crustaceans, and echinoderms. Murex snails use their strong jaws to crush the shells of their prey, or they use their radulae to drill holes in the shells and then inject digestive enzymes.

    Tags:

    Previous 

  • How do I estimate the size of the Megalodon Shark by the tooth?

    You can estimate the size of the Megalodon tooth if you have a primary tooth ( one of the top teeth in the jaw which is for the most part symmetrical) It is about 1/8 of an inch for every foot. So to determine the size of a shark with a 7-inch tooth: There are eight 1/8’s of an inch in an inch. 8 X 7″ inches is 56 ft 

  • HOW Does a Megalodon Shark Tooth Get Black Squiggly Lines on the Enamel?

    The black squiggly lines you see on the Fossil Megalodon shark tooth above are created by a serpulid marine worm. The serpulid tube worm attaches itself to the surface of a megalodon tooth. All serpulids build hard tubes of Crystalline calcium carbonate and mucopolysaccharide matrix using glands located on the collar. These tube worms will die off when covered with sediment leaving only the tube-like structure attached to the tooth. When the tube worm on the shark tooth is covered by sediment it will die. The sediment creates a low-oxygenated environment for Anaerobic bacteria to thrive. They will start digesting the mucopolysaccharide matrix. The anaerobic bacteria creates a chemical reaction that produces hydrogen sulfide which leaves a black stain. The black stain on the shark tooth is exactly where the tube worm was. This same black stain can be seen with oysters and encrusted bryzoan that attach themselves to Megalodon teeth. Usually, it's more of a black spot. 

  • Why and How are Megalodon Teeth Polished

    Shark teeth are polished to add value. When polished the shine contrast and color can be very attractive. 
    We have many collectors that buy these and yes through the decades they have always held their value to a commercial whole tooth. Commercial polished or natural or commercial teeth are usually affordable teeth for someone who wants a nice-looking megalodon tooth. Serious collectors will pay high dollars for perfect unaltered teeth. 

  • Why are there so many Megalodon teeth?

    One shark loses an average of 20,000 teeth in their lifetime. Some species lose up to 50,000 teeth in their lifetime. It only takes on average 7-10 days for the second row of teeth to move up to the first row. In 7 to 10 days later the first row of teeth end up on the bottom of the ocean where they land in a sediment and become fossilized. If you take 1 shark with 20,000 teeth times millions of sharks, times millions of years there is a number that your calculator would not be able to handle all of the zeros. The reason sharks have so many teeth is that don’t have hands to eat around the bone like we do. They bite right into the bone or even right through the bone. This causes damage to the teeth breaking them or dislodging them from the jaw. If they didn’t have replacements they would starve. 

Item added to cart.
0 items - $0.00